1、(2006•南通)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.
2、(2009●庆阳)如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9.8t-4.9t2,那么小球运动中的最大高度h最大=
米.
悦考网
3、 如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交y=
1
2
x2
的图象于点Ai,交直线y=-
1
2
x
于点Bi.则
1
A1B1
+
1
A2B2
+…+
1
AnBn
=

4、 (2008●北京)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.
5、 (2012•济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需
秒.
6、 (2011●山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是(  )
  • A 、ac>0
  • B 、方程ax2+bx+c=0的两根是x1=-1,x2=3
  • C 、2a-b=0
  • D 、当x>0时,y随x的增大而减小
7、 如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,交y轴的负半轴于点D,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ADB的大小;
(2)请直接写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)若点M是y轴上一点,以点M,A,C为顶点作平行四边形,该平行四边形的另一顶点N在第(3)题的抛物线上,请直接写出点M的坐标.
8、 (2008•乌鲁木齐)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
9、已知二次函数y=x2-6x+n的最小值为1,那么n的值是
10、 如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A、B两点,开口向下的抛物线经过点A、B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)请直接写出A,B,P三点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在点D,使△ABD面积等于△ABC面积的3倍?若存在,求出点D的坐标;若不存在,请说明理由.

■二次函数的定义

    1、定义:一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x 的二次函数。

    2、二次函数的解析式有三种形式:

    (1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);

    (2)顶点式:y=a(x-h)2+k (a,h,k是常数,a≠0)

    (3)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次好方程ax2+bx+c=0有实根x1和x2存在时,根据二次三项式的分解因式ax2+bx+c=a(x+x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。如果没有交点,则不能这样表示。