1、已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)在如图所示的直角坐标系中画出C1的大致图象.
(3)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(4)若P(n,y1),Q(1,y2)是C1上的两点,且y1>y2,求实数n的取值范围.
悦考网
2、抛物线y=-
1
3
(x-5)2+3
的顶点坐标是
3、 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是(  )
悦考网
  • A 、当x>1时,y随x的增大而增大
  • B 、3是方程ax2+bx+c=0的一个根
  • C 、ac>0
  • D 、a+b+c<0
4、 (2009•包头)已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是
个.
悦考网
5、(2012•乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.
悦考网
6、(2008•乐山)一家电脑公司推出一款新型电脑,投放市场以来的利润情况可以看做是抛物线的一部分,请结合下面的图象解答以下问题:
(1)求该抛物线对应的二次函数的解析式;
(2)该公司在经营此款电脑过程中,第几个月的利润最大,最大利润是多少;
(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损何时亏损)作出预测.
悦考网
7、在平面直角坐标系中,点M的坐标为(-1,1),点N的坐标为(3,5),点P为抛物线y=x2-3x+2上的一个动点,当PM+PN之长最短时,点P的坐标是(  )
  • A 、(0,2)或(4,6)
  • B 、(4,6)
  • C 、(0,2)
  • D 、无法确定
8、如图1、2,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A.悦考网
(1)求此抛物线的解析式;
(2)如图1,若M(0,1),过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)如图2,抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.
9、抛物线y=(x-2)2+5的顶点坐标是
10、如图,已知抛物线y=ax2+bx+c的顶点为P(1,-2),且经过点A(-3,6),并与x轴交于点B和C.
悦考网
(1)求这个二次函数的解析式,并求出点C坐标及∠ACB的大小;
(2)设D为线段OC上一点,满足∠DPC=∠BAC,求D的坐标;
(3)在x轴上,是否存在点M,使得以M为圆心的圆能与直线AC、直线PC及y轴都相切?如果存在,求出点M的坐标;若不存在,请说明理由.